1196: [HNOI2006]公路修建问题
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2657 Solved: 1511
[ Submit][ Status][ Discuss]
Description
OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。 OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。 OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率, OIER Association希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIER Association也不希望为一条公路花费的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。
Input
第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。 N和k如前所述,m表示有m对景点之间可以修公路。以下的m-1行,每一行有4个正整数a,b,c1,c2 (1≤a,b≤n,a≠b,1≤c2≤c1≤30000)表示在景点a与b 之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。
Output
一个数据,表示花费最大的公路的花费。
Sample Input
Sample Output
先按一级费用排序,用kruskal选出最便宜的k条公路
再按二级费用排序,用kruskal求出最小生成树
中间最高的费用就是答案
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef struct Road
{
int x, y, k1, k2;
bool operator < (const Road &b) const
{
if(k1<b.k1)
return 1;
return 0;
}
}Road;
Road s[20005];
int fa[10005];
bool comp(Road a, Road b)
{
if(a.k2<b.k2)
return 1;
return 0;
}
int Find(int x)
{
if(fa[x]==0)
return x;
return fa[x] = Find(fa[x]);
}
int main(void)
{
int n, i, k, m, t1, t2, ans;
scanf("%d%d%d", &n, &k, &m);
m -= 1;
for(i=1;i<=m;i++)
scanf("%d%d%d%d", &s[i].x, &s[i].y, &s[i].k1, &s[i].k2);
sort(s+1, s+m+1);
ans = 0;
for(i=1;i<=m;i++)
{
t1 = Find(s[i].x);
t2 = Find(s[i].y);
if(t1!=t2)
{
ans = max(ans, s[i].k1);
fa[t1] = t2;
k--;
}
if(k==0)
break;
}
sort(s+1, s+m+1, comp);
for(i=1;i<=m;i++)
{
t1 = Find(s[i].x);
t2 = Find(s[i].y);
if(t1!=t2)
{
ans = max(ans, s[i].k2);
fa[t1] = t2;
}
}
printf("%d\n", ans);
return 0;
}