bzoj 1196: [HNOI2006]公路修建问题(贪心+最小生成树)

1196: [HNOI2006]公路修建问题

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 2657   Solved: 1511
[ Submit][ Status][ Discuss]

Description

OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。 OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。 OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率, OIER Association希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIER Association也不希望为一条公路花费的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。

Input

第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。 N和k如前所述,m表示有m对景点之间可以修公路。以下的m-1行,每一行有4个正整数a,b,c1,c2 (1≤a,b≤n,a≠b,1≤c2≤c1≤30000)表示在景点a与b 之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。

Output

一个数据,表示花费最大的公路的花费。

Sample Input

10 4 20
3 9 6 3
1 3 4 1
5 3 10 2
8 9 8 7
6 8 8 3
7 1 3 2
4 9 9 5
10 8 9 1
2 6 9 1
6 7 9 8
2 6 2 1
3 8 9 5
3 2 9 6
1 6 10 3
5 6 3 1
2 7 6 1
7 8 6 2
10 9 2 1
7 1 10 2

Sample Output

5


先按一级费用排序,用kruskal选出最便宜的k条公路

再按二级费用排序,用kruskal求出最小生成树

中间最高的费用就是答案


#include<stdio.h>
#include<algorithm>
using namespace std;
typedef struct Road
{
	int x, y, k1, k2;
	bool operator < (const Road &b) const
	{
		if(k1<b.k1)
			return 1;
		return 0;
	}
}Road;
Road s[20005];
int fa[10005];
bool comp(Road a, Road b)
{
	if(a.k2<b.k2)
		return 1;
	return 0;
}
int Find(int x)
{
	if(fa[x]==0)
		return x;
	return fa[x] = Find(fa[x]);
}
int main(void)
{
	int n, i, k, m, t1, t2, ans;
	scanf("%d%d%d", &n, &k, &m);
	m -= 1;
	for(i=1;i<=m;i++)
		scanf("%d%d%d%d", &s[i].x, &s[i].y, &s[i].k1, &s[i].k2);
	sort(s+1, s+m+1);
	ans = 0;
	for(i=1;i<=m;i++)
	{
		t1 = Find(s[i].x);
		t2 = Find(s[i].y);
		if(t1!=t2)
		{
			ans = max(ans, s[i].k1);
			fa[t1] = t2;
			k--;
		}
		if(k==0)
			break;
	}
	sort(s+1, s+m+1, comp);
	for(i=1;i<=m;i++)
	{
		t1 = Find(s[i].x);
		t2 = Find(s[i].y);
		if(t1!=t2)
		{
			ans = max(ans, s[i].k2);
			fa[t1] = t2;
		}
	}
	printf("%d\n", ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值